

# CII National Awards For Excellence in Energy Management, 2021



Honda Motorcycle & Scooter India Pvt. Ltd. (HMSI) Tapukara Plant A Presentation By : 1. Manoj Ku. Singh 2. Sachin Agarwal



| SN | Contents                                          | <b>Slides</b> | Time   |
|----|---------------------------------------------------|---------------|--------|
| 1  | Company Profile                                   | 1-2           | 1 min. |
| 2  | Energy Management                                 | 3-4           | 2 min. |
| 3  | Energy Data                                       | 5-13          | 4 min. |
| 4  | ECON Projects & Innovative Ideas                  | 14-19         | 3 min. |
| 5  | Renewal & Green Energy                            | 20-23         | 2 min. |
| 6  | GHG Emission, Green Supply, and Capacity Building | 24-26         | 2 min. |
| 7  | Review Mechanism, Employee Engagement             | 27-29         | 2 min. |
| 8  | Way Forward                                       | 30            | 1 min. |



| SN | Contents                                          | <b>Slides</b> | Time   |
|----|---------------------------------------------------|---------------|--------|
| 1  | Company Profile                                   | 1-2           | 1 min. |
| 2  | Energy Management                                 | 3-4           | 2 min. |
| 3  | Energy Data                                       | 5-13          | 4 min. |
| 4  | ECON Projects & Innovative Ideas                  | 14-19         | 3 min. |
| 5  | Renewal & Green Energy                            | 20-23         | 2 min. |
| 6  | GHG Emission, Green Supply, and Capacity Building | 24-26         | 2 min. |
| 7  | Review Mechanism, Employee Engagement             | 27-29         | 2 min. |
| 8  | Way Forward                                       | 30            | 1 min. |



# **Company Profile**





| SN | Particular  | Details             |
|----|-------------|---------------------|
| 1  | Location    | Tapukara, Raj.      |
| 2  | Land area   | 239700 m2           |
| 3  | Const. Area | 114770 m2           |
| 4  | Investment  | 925 M               |
| 5  | Model       | 09 Model in 2 lines |

HMSI 2F Initially started in 2011 with L1 (SC) in Step1 & L2 (MC) in Step2 HMSI 2F have become QCD Benchmark factory with a Capacity of 1.24 million Units/year

### **HMSI Tapukara Salient Feature**

HONDA The Power of Dreams



All the available latest technology were incorporated to enhance the level of both Quality & Quantity with optimization of resource



| SN | Contents                                          | <b>Slides</b> | Time   |
|----|---------------------------------------------------|---------------|--------|
| 1  | Company Profile                                   | 1-2           | 1 min. |
| 2  | Energy Management                                 | 3-4           | 2 min. |
| 3  | Energy Data                                       | 5-13          | 4 min. |
| 4  | ECON Projects & Innovative Ideas                  | 14-19         | 3 min. |
| 5  | Renewal & Green Energy                            | 20-23         | 2 min. |
| 6  | GHG Emission, Green Supply, and Capacity Building | 24-26         | 2 min. |
| 7  | Review Mechanism, Employee Engagement             | 27-29         | 2 min. |
| 8  | Way Forward                                       | 30            | 1 min. |

## **HONDA** Environment Strategy & Deployment 03/30



Honda basic approaches to reduce environmental impacts not only in product design, development and manufacturing but in all stage of product life cycle.

Place

Date

: Tapukara

: 16-07-2021

### HMSI – 2F ENERGY POLICY

As responsible member of society, we at Honda Motorcycle & Scooter India Pvt. Ltd - Tapukara Plant will take every possible measure to eliminate wastage & Conserve energy. Our plant is committed in each of our manufacturing activity to:

- Substitute 100 % of our total energy requirement with renewable source of energy by 2050.
- Adopt energy efficient technologies & equipment for all future expansion & renovations.
- Implement intensive energy monitoring system, periodical audit & review system.
- Review periodically & compare our specific Energy Consumption with National/ International level bench marks to further drive the drive the idea of energy conservation.
- Continually improve energy efficiency through PDCA cycles & by setting short term & long term targets.
- Ensure sufficient information & resources are available to achieve the targets for energy conservation.
- Abide by the applicable legal & other requirements related to energy consumption.
- Promote awareness on the Energy Management System & propagate the energy policy among our employees, as well as persons working on our behalf & to the generic public.

Havelon

Plant Head – 2F

Align our global commitment with plant specific policy and Continual PDCA and benchmarking is part of our policy.



| SN | Contents                                          | <b>Slides</b> | Time   |
|----|---------------------------------------------------|---------------|--------|
| 1  | Company Profile                                   | 1-2           | 1 min. |
| 2  | Energy Management                                 | 3-4           | 2 min. |
| 3  | Energy Data                                       | 5-13          | 4 min. |
| 4  | ECON Projects & Innovative Ideas                  | 14-19         | 3 min. |
| 5  | Renewal & Green Energy                            | 20-23         | 2 min. |
| 6  | GHG Emission, Green Supply, and Capacity Building | 24-26         | 2 min. |
| 7  | Review Mechanism, Employee Engagement             | 27-29         | 2 min. |
| 8  | Way Forward                                       | 30            | 1 min. |

### **Energy Usage in Tapukara Plant**

### 05/30



Energy Usage in Tapukara Plant : 72% Electricity (Solar and Grid) & 28% LNG

## **Energy Mix Flow Diagram**

### 06/30



Power Distribution Flow is from Generation Point to User End. Highly Efficient UPS Installed for MA and HPDC Shop.

# **Target & Action Plan**



### [Action Plan for achieving Targets → Future Identified Projects]

| Sr. | Themes                                 | 97 Ki (2020- 21) | 98 Ki (202 | 1 – 22) | 99 Ki (2022-23) | 100 Ki (2024-25) |
|-----|----------------------------------------|------------------|------------|---------|-----------------|------------------|
| 1   | Solar Step-2 (2MW Capacity)            |                  |            |         |                 |                  |
| 2   | Heat Pump in DC Chiller                |                  |            |         |                 |                  |
| 3   | EC Fan in Air Washers                  |                  |            |         |                 |                  |
| 4   | Plug Fan in PA ABS Blower              |                  |            |         |                 |                  |
| 5   | Solar Power Purchase PPA               |                  |            |         |                 |                  |
| 6   | Solar Surplus sell to JVVNL            |                  |            | <u></u> |                 |                  |
| 7   | Mini Non IBR Boiler -LNG               |                  |            |         |                 |                  |
| 8   | Smart Kitchen - LNG                    |                  |            |         |                 |                  |
| 9   | Centrifugal PA Chiller                 |                  |            |         |                 |                  |
| 10  | EC Axial roof exhaust fan              |                  |            |         |                 |                  |
| 11  | EC ZA fin fan in PA ASU                |                  |            |         |                 |                  |
| 12  | EC ZA fin fan in PA ASU -2             |                  |            |         |                 |                  |
| 13  | Solar Step-3 (650KW)                   |                  |            | _ \     |                 |                  |
| 14  | Centrifugal PA Chiller-2               |                  |            |         |                 |                  |
| 15  | EC Axial roof exhaust fan -2           |                  |            |         |                 |                  |
| 16  | Energy efficient burner : PA           |                  |            |         |                 |                  |
| 17  | Artic master in DC chiller             |                  |            |         |                 |                  |
| 18  | PA ASU - IDAC (indirect cooling)       |                  |            |         |                 |                  |
| 19  | Air booster replacement                |                  |            | $\sim$  |                 |                  |
| 20  | Hydroxy Generator                      |                  |            |         |                 |                  |
| 21  | Energy efficient valve in Chiller line |                  |            |         |                 | <u>r</u>         |
| 22  | Renewable energy : Hydro, wind, hybrid |                  |            |         |                 |                  |

Projects Identified and implemented to achieve the target and optimize the Electrical & Thermal Energy Consumption

# **HONDA** Energy Efficiency Projects Road Map

08/30



HMSI 2F have focus on incorporating the latest technology since beginning of any new setup to reduce Power cost & CO<sub>2</sub> reduction. We are sharing some important project like:-







10/30





11/30









13/30





| SN | Contents                                          | <b>Slides</b> | Time   |
|----|---------------------------------------------------|---------------|--------|
| 1  | Company Profile                                   | 1-2           | 1 min. |
| 2  | Energy Management                                 | 3-4           | 2 min. |
| 3  | Energy Data                                       | 5-13          | 4 min. |
| 4  | ECON Projects & Innovative Ideas                  | 14-19         | 3 min. |
| 5  | Renewal & Green Energy                            | 20-23         | 2 min. |
| 6  | GHG Emission, Green Supply, and Capacity Building | 24-26         | 2 min. |
| 7  | Review Mechanism, Employee Engagement             | 27-29         | 2 min. |
| 8  | Way Forward                                       | 30            | 1 min. |

## **List of Encon Projects**

| S.N. | Theme                                                              | Saving<br>(Mill Kwh/Yr) | Saving<br>(Mill Rs/Yr)) | CO₂ Reduction<br>(Ton / Yr) |
|------|--------------------------------------------------------------------|-------------------------|-------------------------|-----------------------------|
| 1    | Solar Step-1 ( 5MW )                                               | 6.50                    | 52.33                   | 4856                        |
| 2    | Solar Step-2 ( 2MW )                                               | 2.60                    | 20.93                   | 1942                        |
| 3    | EC Fan in All Air Washers                                          | 1.41                    | 11.32                   | 1050                        |
| 4    | Plug Fan IC in PA Shop                                             | 0.33                    | 2.66                    | 247                         |
| 5    | Plug Fan Expansion in PA Shop                                      | 0.05                    | 0.38                    | 35                          |
| 6    | PA ASU Mezz Clean to reduce heat load on PA Chiller                | 0.10                    | 0.80                    | 74                          |
| 7    | WE dust collector utilize in Fume exhaust by selecting Old Blowers | 0.05                    | 0.40                    | 37                          |
| 8    | Energy saving through oven circulation fan speed reduction         | 0.04                    | 0.28                    | 26                          |
| 9    | Energy saving through booth load reduction in ABS1 & SPC1          | 0.03                    | 0.26                    | 24                          |
| 10   | EC Fan in HPDC AW-24                                               | 0.07                    | 0.53                    | 49                          |
| 11   | PA Shop AW Stop in C Shift                                         | 0.02                    | 0.18                    | 17                          |
| 12   | Plug Fan in ABS Blower-3nos.                                       | 0.08                    | 0.67                    | 62                          |
| 13   | Solar Hybrid Air Conditioner 4 nos                                 | 0.01                    | 0.05                    | 5                           |
| 14   | Magnetic Coupling in Pump in Cooling Tower                         | 0.01                    | 0.08                    | 8                           |
| 15   | Cooling Tower Blade Metallic to Epoxy Resin                        | 0.00                    | 0.03                    | 3                           |
| 16   | PA Shop Chilled Water Valve Optimization                           | 0.28                    | 2.24                    | 208                         |
| 17   | Centrifugal C.Tower Blade to E-Glass Epoxy FRP                     | 0.00                    | 0.03                    | 3                           |
| 18   | Magnetic Coupling in Compressor Pump                               | 0.01                    | 0.04                    | 4                           |
| 19   | Compressor Receiver Valve Auto Air Drain Type                      | 0.14                    | 1.13                    | 104                         |
| 20   | Cost Saving by reducing Chiller Pump Frequency                     | 0.01                    | 0.05                    | 5                           |
| 21   | Enhance Operation of ED Chiller                                    | 0.01                    | 0.05                    | 4                           |
| 22   | SCADA system for Paint Shop                                        | 0.08                    | 0.65                    | 60                          |
| 23   | Energy saving through Washing machine Air blower speed reduction   | 0.01                    | 0.11                    | 10                          |
| 24   | Air Saving by modification in trimming press in HPDC               | 0.09                    | 0.74                    | 69                          |
| 25   | Air Saving during lunch & Dinner time in Weld Shop                 | 0.00                    | 0.02                    | 2                           |
| 26   | High efficiency motor in Paint shop                                | 0.00                    | 0.01                    | 1                           |
| 27   | VFD in Paint shop, PT line pump                                    | 0.02                    | 0.20                    | 19                          |
| 28   | Scale watcher & Side Screen Filtration Unit                        | 0.02                    | 0.15                    | 14                          |
| 29   | Air saving by modification in Baker Unit                           | 0.20                    | 1.61                    | 149                         |
| 30   | power saving through VFD installation in ETP                       | 0.00                    | 0.02                    | 2                           |

# **List of Encon Projects**

| S.N. | Theme                                                                           | Saving<br>(Mill<br>Kwh/Yr) | Saving<br>(Mill Rs/Yr)) | Co2 Reduction<br>(Ton / Yr) |
|------|---------------------------------------------------------------------------------|----------------------------|-------------------------|-----------------------------|
| 31   | Inhouse preparation of ETP control panel                                        | 0.04                       | 0.31                    | 29                          |
| 32   | Power saving by providing energy efficient motor in assembly line               | 0.01                       | 0.04                    | 4                           |
| 33   | Air saving in AF sub-assembly, during non-working hrs.                          | 0.02                       | 0.14                    | 13                          |
| 34   | All hydraulic press power saving mode from 15 min to 2 min hybrid mode          | 0.01                       | 0.06                    | 6                           |
| 35   | VFD installation at ACED line Hot water circulation pump                        | 0.00                       | 0.02                    | 2                           |
| 36   | Energy efficient motor provided in ETP MEE Permeate pump                        | 0.03                       | 0.26                    | 24                          |
| 37   | High watt to low watt light at MS dock                                          | 0.01                       | 0.12                    | 11                          |
| 38   | PA Air Dryer                                                                    | 0.06                       | 0.46                    | 43                          |
| 39   | Optimization of DC AHU                                                          | 0.01                       | 0.06                    | 6                           |
| 40   | WE dust collector utilize in Fume exhaust by selecting Old Blowers              | 0.02                       | 0.15                    | 14                          |
| 41   | Compressed air leakage arresting                                                | 0.07                       | 0.60                    | 56                          |
| 42   | Power consumption saving in DURR machine during non working hours               | 0.00                       | 0.02                    | 2                           |
| 43   | Mixing of Additives in AC/ Chiller for reducing load                            | 0.01                       | 0.10                    | 9                           |
| 44   | Air Leakage control in Shop floor                                               | 0.06                       | 0.45                    | 42                          |
| 45   | High watt to low watt light at High Mast Pole                                   | 0.00                       | 0.01                    | 1                           |
| 46   | Steam supply optimization in HPDC evaporator                                    | 0.01                       | 0.15                    | 12                          |
| 47   | Thermal paint on HPDC furnace                                                   | 0.01                       | 0.21                    | 17                          |
| 48   | Smart Kitchen                                                                   | 0.01                       | 0.35                    | 28                          |
| 49   | Boiler Modulation                                                               | 0.00                       | 0.10                    | 8                           |
| 50   | Installation of Heat Pump on DC Chiller                                         | 0.14                       | 3.80                    | 304                         |
| 51   | Cost saving by introducing waste heat based Evaporator in place of steam based. | 0.04                       | 1.06                    | 84                          |
| 52   | Airtron for Air Conditioning                                                    | 0.03                       | 0.23                    | 21                          |
| 53   | Roof Exhaust Fan from Propeller to Axial flow                                   | 0.00                       | 0.02                    | 2                           |
| 54   | Solar Dome Light                                                                | 0.00                       | 0.01                    | 1                           |
| 55   | Coventional Blower replacement with EC in AW 17 MA                              | 0.13                       | 1.03                    | 95                          |
| 56   | Implementation of VFD in Airwasher                                              | 0.13                       | 1.04                    | 96                          |
| 57   | Cost saving through Maintaining Power Factor up 0.99                            | 0.53                       | 4.27                    | 396                         |
| 58   | Centrifugal Compressor                                                          | 0.45                       | 3.59                    | 333                         |
| 59   | Online Monitoring System in Utility                                             | 0.16                       | 1.30                    | 121                         |
| 60   | EC Fan in HPDC AW                                                               | 0.00                       | 0.00                    | 0                           |

# **List of Encon Projects**

| S.N. | Theme                                                                                             | Saving<br>(Mill<br>Kwh/Yr) | Saving<br>(Mill Rs/Yr)) | Co2 Reduction<br>(Ton / Yr) |
|------|---------------------------------------------------------------------------------------------------|----------------------------|-------------------------|-----------------------------|
| 61   | Yamada pump replacement in Die-Lubrication                                                        | 0.01                       | 0.10                    | 9                           |
| 62   | Pressure Sensor                                                                                   | 0.01                       | 0.10                    | 9                           |
| 63   | Energy efficient pump installation in ETP                                                         | 0.01                       | 0.09                    | 8                           |
| 64   | Air Saving during lunch & Dinner time in Weld Shop                                                | 0.01                       | 0.09                    | 8                           |
| 65   | High efficiency motor in Paint shop                                                               | 0.01                       | 0.04                    | 4                           |
| 66   | VFD in Paint shop, PT line pump                                                                   | 0.02                       | 0.20                    | 18                          |
| 67   | SCADA system for Paint Shop                                                                       | 0.40                       | 3.23                    | 299                         |
| 68   | Energy saving through VFD installation in ACED line touch-up booth.                               | 0.01                       | 0.07                    | 7                           |
| 69   | Magnetic Coupling in CT Pump-1 nos.                                                               | 0.00                       | 0.03                    | 3                           |
| 70   | Axial Fan in Roof Exhaust - 6 nos.                                                                | 0.00                       | 0.02                    | 2                           |
| 73   | Power Saving Through Open Access                                                                  | 0.20                       | 1.65                    | 153                         |
| 74   | Boiler Modulation                                                                                 | 0.00                       | 0.01                    | 0                           |
| 75   | Waste Heat Recovery System in HPDC Furnace                                                        | 0.14                       | 3.84                    | 306                         |
| 76   | Installation of Heat Pump on DC Chiller and Utilize Waste heat to supply hot water for Paint Shop | 0.38                       | 10.14                   | 810                         |
| 77   | Sludge Dewatering System                                                                          | 0.02                       | 0.14                    | 13                          |
| 78   | To reduce heat loss from melting furnace (LNG save through Aerogel Painting)                      | 0.03                       | 0.25                    | 23                          |
| 79   | Power and steel cost saving by installing VFD on shot-blasting machine                            | 0.13                       | 1.04                    | 96                          |
| 80   | Roof exhaust fan running linkage as per production.                                               | 0.04                       | 0.32                    | 29                          |
| 81   | Installation of tertiary RO to reduce evaporator running from 16hr to 7hr                         | 0.10                       | 0.77                    | 71                          |
| 82   | Compressor Receiver Valve Auto Air Drain Type                                                     | 0.15                       | 1.22                    | 113                         |
| 83   | Magnetic Coupling in Compressor Pump                                                              | 0.00                       | 0.02                    | 2                           |
| 84   | Replacement of Sludge transfer Pump with High Efiiciency Pumps in WWTP                            | 0.01                       | 0.06                    | 5                           |
| 85   | Artic Master                                                                                      | 0.01                       | 0.06                    | 6                           |
| 86   | PA Shop AW Stop in C Shift                                                                        | 0.01                       | 0.08                    | 7                           |
| 87   | Thermal Paint on HPDC Furnace                                                                     | 0.03                       | 0.72                    | 57                          |
| 88   | High Watt to Low Watt Light                                                                       | 0.02                       | 0.16                    | 15                          |
| 89   | Lighting Optimization at Logistic Mezzanine                                                       | 0.02                       | 0.15                    | 14                          |
| 90   | MaxR100 Refrigerant Additive in HVAC System                                                       | 0.01                       | 0.05                    | 4                           |

### **List of Encon Projects**

| S.N. | Theme                                                                             | Saving<br>(Mill<br>Kwh/Yr) | Saving<br>(Mill Rs/Yr)) | CO₂ Reduction<br>(Ton / Yr) |
|------|-----------------------------------------------------------------------------------|----------------------------|-------------------------|-----------------------------|
| 91   | Inline Duct EC Fan                                                                | 0.02                       | 0.12                    | 12                          |
| 92   | SOLAR PPA 3 MW                                                                    | 0.28                       | 2.28                    | 211                         |
| 93   | ED Chiller Pump operation optimization                                            | 0.01                       | 0.12                    | 11                          |
| 94   | Intelligent Touch Manager                                                         | 0.01                       | 0.10                    | 9                           |
| 95   | AHF Installation in PA Shop (Capacitor Panel)                                     | 0.04                       | 0.30                    | 28                          |
| 96   | VRV to VRV-X Technology in HPDC CMM Room                                          | 0.01                       | 0.06                    | 5                           |
| 97   | Optimisation of compressed air in Paint Shop dryer for regeneration               | 0.06                       | 0.48                    | 44                          |
| 98   | EC Fan in HPDC AW-24                                                              | 0.02                       | 0.17                    | 16                          |
| 99   | Plug Fan in ABS Blower-3nos.                                                      | 0.00                       | 0.04                    | 3                           |
| 100  | PM motor in weld cooling tower pump                                               | 0.07                       | 0.54                    | 50                          |
| 101  | Hot water Evaporator (Steam stop in DC)                                           | 0.01                       | 0.37                    | 29                          |
| 102  | Elimination Of IBR Boiler                                                         | 0.01                       | 0.27                    | 22                          |
| 103  | Elimination of pumps by feeding reject water directly to Z Soft                   | 0.01                       | 0.04                    | 4                           |
| 104  | Sludge Dewatering System (Centrifugal sys)                                        | 0.12                       | 1.00                    | 93                          |
| 105  | Energy saving by replacement of existing motor with energy efficient motor        | 0.01                       | 0.08                    | 8                           |
| 106  | Cost saving by introducing waste heat based Evaporator in place of steam based.   | 0.06                       | 0.48                    | 45                          |
| 107  | Energy saving through Washing machine Air blower speed reduction                  | 0.01                       | 0.12                    | 11                          |
| 108  | Air Saving by modification in trimming press in HPDC                              | 0.01                       | 0.07                    | 6                           |
| 109  | power saving through VFD installation in ETP                                      | 0.02                       | 0.14                    | 13                          |
| 110  | Power saving by providing energy efficient motor in assembly line                 | 0.01                       | 0.07                    | 6                           |
| 111  | Air saving in AF sub-assembly, during non-working hrs.                            | 0.02                       | 0.14                    | 13                          |
| 112  | All hydraulic press power saving mode from 15 min to 2 min hybrid mode            | 0.01                       | 0.07                    | 6                           |
| 113  | VFD installation at ACED line Hot water circulation pump                          | 0.00                       | 0.02                    | 2                           |
| 114  | Power consumption saving in DURR machine during non working hours                 | 0.01                       | 0.08                    | 7                           |
| 115  | Power saving in logistics Scissor lifter                                          | 0.09                       | 0.71                    | 66                          |
| 116  | Energy saving by through coolant pump stop in idle time in FRD                    | 0.13                       | 1.02                    | 95                          |
| 117  | Energy saving through speed reduction of oven circulation fan during post purging | 0.02                       | 0.12                    | 11                          |
| 118  | Energy saving by providing VFD in Washing machine No. 1 & 3 Spray pump            | 0.04                       | 0.29                    | 27                          |
| 119  | Energy efficient motor to be provide in AF Subassembly Press                      | 0.01                       | 0.10                    | 9                           |
| 120  | Hydr.Power pack motor saving in Brother mc's                                      | 0.01                       | 0.10                    | 9                           |

We have implemented 120 projects in last three year and due to this HMSI 2F able to save 152 Mil Rs. / yr, 118 Mil. Kwh/Yr and 13,837 MT CO<sub>2</sub>/ yr.

### **HONDA** The Power of Dreams Innovation - Small Wind Turbine



Reduce CO<sub>2</sub> 23 % by reduction of Power 0.03 mill kwh/yr thru installation of "Wind Turbine"

# **HONDA** Energy Efficient EC Axial Exhaust Fan 19/30



Reduce CO<sub>2</sub> 78 % by reduction of Power 0.44 mill kwh/yr thru installation of "EC Axial roof Exhaust Fan"



| SN | Contents                                          | <b>Slides</b> | Time   |
|----|---------------------------------------------------|---------------|--------|
| 1  | Company Profile                                   | 1-2           | 1 min. |
| 2  | Energy Management                                 | 3-4           | 2 min. |
| 3  | Energy Data                                       | 5-13          | 4 min. |
| 4  | ECON Projects & Innovative Ideas                  | 14-19         | 3 min. |
| 5  | Renewal & Green Energy                            | 20-23         | 2 min. |
| 6  | GHG Emission, Green Supply, and Capacity Building | 24-26         | 2 min. |
| 7  | Review Mechanism, Employee Engagement             | 27-29         | 2 min. |
| 8  | Way Forward                                       | 30            | 1 min. |



## **Renewal Energy**





### Situation analysis as per Geographical condition

| Resource                 | Feasibility<br>in India | Feasibility in<br>HMSI-2F | Standard<br>Requirement | Status in<br>HMSI 2F                       | Gap<br>Analysis                        |
|--------------------------|-------------------------|---------------------------|-------------------------|--------------------------------------------|----------------------------------------|
| Solar                    |                         |                           | Depend on<br>Radiation  | Implemented<br>Roof – 5.9MW<br>PPA – 6.1MW | -                                      |
| Wind                     |                         |                           | 12~14 km/h              | Implemented<br>(2.5 KW)                    | Average<br><b>5 km/h</b><br>in Bhiwadi |
| Hydro                    |                         | $\bigcirc$                | Need Water<br>Reservoir |                                            | No Water<br>Source                     |
| Bio-Energy               |                         | $\bigcirc$                |                         | Under Study                                | Technical<br>Feasibility               |
| Geothermal               |                         |                           |                         | Implemented                                | -                                      |
| Hybrid<br>(Solar + Wind) |                         |                           |                         | Under<br>installation                      | 3-4 KW                                 |

HMSI 2F long term target is 100% utilization of carbon free energy by 2050.



## **Target & Action**



To achieve 100% utilization of carbon free energy by 2050 different initiatives has been taken.



### Thermal Energy Analysis of HMSI – 2F



LNG consumption in production equipment has been reduced by 21% over the yrs. To optimize further, need to focus on non production equipment like canteen

# **Smart Kitchen [Before/After]**



Total LNG saving due to this project is 56322 SCM / Year and CO<sub>2</sub> reduction is 121 T./ Yr.



| SN | Contents                                          | <b>Slides</b> | Time   |
|----|---------------------------------------------------|---------------|--------|
| 1  | Company Profile                                   | 1-2           | 1 min. |
| 2  | Energy Management                                 | 3-4           | 2 min. |
| 3  | Energy Data                                       | 5-13          | 4 min. |
| 4  | ECON Projects & Innovative Ideas                  | 14-19         | 3 min. |
| 5  | Renewal & Green Energy                            | 20-23         | 2 min. |
| 6  | GHG Emission, Green Supply, and Capacity Building | 24-26         | 2 min. |
| 7  | Review Mechanism, Employee Engagement             | 27-29         | 2 min. |
| 8  | Way Forward                                       | 30            | 1 min. |

# **Scope of GHG Emission Reduction**

HONDA The Power of Dreams





Scope identified in HMSI for GHG emission reduction

# **Monitoring of GHG reduction**

### Scope 1

HONDA

|                           |                  |                               |                            |                  | Scope                         | 01 Data       | a                |                               |               |                     |                               |                            |
|---------------------------|------------------|-------------------------------|----------------------------|------------------|-------------------------------|---------------|------------------|-------------------------------|---------------|---------------------|-------------------------------|----------------------------|
|                           | 94 Ki            |                               |                            | 95 Ki            |                               |               | 96 Ki            |                               |               | 97 Ki               |                               |                            |
| ltems                     | Total<br>Vehicle | Data<br>(Kg CO <sub>2</sub> ) | Kg<br>CO <sub>2</sub> /Veh | Total<br>Vehicle | Data<br>(Kg CO <sub>2</sub> ) | Kg<br>CO₂/Veh | Total<br>Vehicle | Data<br>(Kg CO <sub>2</sub> ) | Kg<br>CO₂/Veh | Vehicle<br>(Dec'19) | Data<br>(Kg CO <sub>2</sub> ) | Kg<br>CO <sub>2</sub> /Veh |
| Fuel Consumption          |                  | 9985100                       | 9.35                       |                  | 10482790                      | 8.51          |                  | 10047080                      | 8.64          | 831091              | 6383230                       | 7.68                       |
| Refrigerants              | 1067416          | 488700                        | 0.46                       | 1232057          | 1306880                       | 1.06          | 1163281          | 249720                        | 0.21          |                     | 161060                        | 0.19                       |
| CO <sub>2</sub> Cylinders |                  | 4468                          | 0.004186                   |                  | 2.5                           | 0.000002      |                  | 5                             | 4E-06         |                     | 2.07                          | 2.5E-06                    |
| Total                     |                  | 10478268                      | <mark>9.82</mark>          |                  | 11789673                      | 9.57          |                  | 10296805                      | 8.85          |                     | 6544292                       | <mark>7.87</mark>          |



### Scope 2



### Scope 3

|                           |                  |                               |                            |                  | Scor                          | be 03 Da                   | ta               |                               |                            |                 |                               |                            |
|---------------------------|------------------|-------------------------------|----------------------------|------------------|-------------------------------|----------------------------|------------------|-------------------------------|----------------------------|-----------------|-------------------------------|----------------------------|
|                           | 94 Ki            |                               |                            | 95 Ki            |                               |                            | 96 Ki            |                               |                            | 97 Ki           |                               |                            |
| Items                     | Total<br>Vehicle | Data<br>(Kg CO <sub>2</sub> ) | Kg<br>CO <sub>2</sub> /Veh | Total<br>Vehicle | Data<br>(Kg CO <sub>2</sub> ) | Kg<br>CO <sub>2</sub> /Veh | Total<br>Vehicle | Data<br>(Kg CO <sub>2</sub> ) | Kg<br>CO <sub>2</sub> /Veh | Total<br>Vehide | Data<br>(Kg CO <sub>2</sub> ) | Kg<br>CO <sub>2</sub> /Veł |
| Waste disposal            |                  | 85000                         | 0.07                       |                  | 115032.5                      | 0.09                       | 1163281          | 103371                        | 0.09                       | 831091          | 61260                         | 0.07                       |
| Employee<br>commute (Car) |                  | 23220                         | 0.02                       |                  | 23649                         | 0.02                       |                  | 23649                         | 0.02                       |                 | 23649                         | 0.03                       |
| Employee<br>commute (Bus) | 1067416          | 102340                        | 0.08                       | 1232057          | 104232                        | 0.08                       |                  | 104232                        | 0.09                       |                 | 104230                        | 0.13                       |
| Logistics trucks          |                  | 6679980                       | 5.42                       | 1                | 6519980                       | 5.29                       |                  | 6007200                       | 5.16                       |                 | 4172500                       | 5.02                       |
| Total                     |                  | 6890540                       | <mark>5.59</mark>          |                  | 6762893.5                     | 5.49                       |                  | 6238452                       | 5.36                       |                 | 4361639                       | 5.25                       |



### Monitoring of reduction is carried out regularly in each scope.



### **HMSI Green Purchase Policy**



### HMSI is committed for establishing the green supply chain network.



| SN | Contents                                          | <b>Slides</b> | Time   |
|----|---------------------------------------------------|---------------|--------|
| 1  | Company Profile                                   | 1-2           | 1 min. |
| 2  | Energy Management                                 | 3-4           | 2 min. |
| 3  | Energy Data                                       | 5-13          | 4 min. |
| 4  | ECON Projects & Innovative Ideas                  | 14-19         | 3 min. |
| 5  | Renewal & Green Energy                            | 20-23         | 2 min. |
| 6  | GHG Emission, Green Supply, and Capacity Building | 24-26         | 2 min. |
| 7  | Review Mechanism, Employee Engagement             | 27-29         | 2 min. |
| 8  | Way Forward                                       | 30            | 1 min. |



### **Energy Management Cell**



For this, Well established organization available to work on energy consumption and innovation related project in this plant.

### **Review Mechanism**

#### Daily Monitoring → Section/Dep't Level **CMS System Electrical Energy Thermal Energy** [DG Online Monitoring] [Power Consumption Monitoring] [Facility Equipment's Monitoring] 11 22882 **Running Hours Optimized In :** 1) Lunch Time 2) Tea Time 3) Holidays KWH , Voltage , Frequency , KVAH , Power Factor over Grid → DG : AUTO 4) Shift change Total Meters Installed for Monitoring at S/S End Changeover DG → Grid : AUTO 19 Nos Meters , Model : ION 7650 Schneider Make DG Monitoring : AUTO [Solar SCADA Monitoring] SCADA Dashboard Weather Monitoring System String Monitoring Sy -------126.30 370.00 0.980 6900.00 49.87 0.878 2353 and 330 2123.03 49.85 HMSI 2F, all monitoring parameters are monitored on SCADA & Online monitoring facility available at a 10 10 10 Glance. **Sharing of Report** स्ट 🐖 स्ट स्ट 6,15 6,15 6.85 6.25 600 2,65 2,65 2,85 2,65 2,65 2,65 2,85 2,65 2,6 9 Jan 5-lan 7-lan 8-lan 10-lan 11-lan Sat Sun Mon Ted 6 7 8 9 10 11 12 4 Jan 5 Jan 6 Jan 7 Jan 8 Jan 9-lan 10-lan 11-lan 12-lan 13-lan 14 lan 15 lan 14.las 20.las lief. Sat Sm 4.0% 11 797 CON ACTUAL 2547 3.56 3.56 3.38 453 1.37 3.55 453 1.52 55 552 ALC 105 155 557 1.55 55 1.55 35 1.44 55 1.54 45 1.52 55 1.55 35 🗄 🔘 Start a sear = 🖿 😥 🤗 F 😰 🗑 A A 10 00 100 Sharing of Daily Data to all Sample Format HODs & Operating Head.

Review mechanism established to check the progress status of the project and regular energy consumption.

### **Employee Awareness Strategies**

29/30

HONDA

The Power of Dreams



Lot of Activities are carried out for employee awareness and employee involvement. Encon Cell Members also being encouraged for Energy Manager Exams & Learnings



| SN | Contents                                          | <b>Slides</b> | Time   |
|----|---------------------------------------------------|---------------|--------|
| 1  | Company Profile                                   | 1-2           | 1 min. |
| 2  | Energy Management                                 | 3-4           | 2 min. |
| 3  | Energy Data                                       | 5-13          | 4 min. |
| 4  | ECON Projects & Innovative Ideas                  | 14-19         | 3 min. |
| 5  | Renewal & Green Energy                            | 20-23         | 2 min. |
| 6  | GHG Emission, Green Supply, and Capacity Building | 24-26         | 2 min. |
| 7  | Review Mechanism, Employee Engagement             | 27-29         | 2 min. |
| 8  | Way Forward                                       | 30            | 1 min. |



### **Way Forward**



HMSI Tapukara plant has been taking continual improvement initiatives to realize our future target to archive 100% utilization of carbon free energy by 2050.



